Data Science for Marketing Analytics


Contact Us

We would love to hear from you. Please complete this form to pre-book or request further information about our delivery options.


I'd like to receive emails with the latest updates and promotions from Insoft.

Data Protection & Privacy

I hereby allow Insoft Ltd. to contact me on this topic. Further, I authorise Insoft Ltd. processing, using collecting and storing my personal data for the purpose of these activities. All your data will be protected and secured as outlined in our privacy policy.

Upcoming Dates

Sep 19 - Sep 21, 2022
09:00 - 17:00

Oct 17 - Oct 19, 2022
09:00 - 17:00

Nov 14 - Nov 16, 2022
09:00 - 17:00

Dec 12 - Dec 14, 2022
09:00 - 17:00

Jan 9 - Jan 11, 2023
09:00 - 17:00

Feb 6 - Feb 8, 2023
09:00 - 17:00

Data Science for Marketing Analytics
3 days  (Instructor Led Online)  |  Data Science

Course Details

The Data Science for Marketing Analytics course, covers every stage of data analytics, from working with a raw dataset to segmenting a population and modelling different parts of the population based on the segments.

The course starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you’ll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you’ll explore ways to evaluate and select the best segmentation approach and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you’ll gain an understanding of regression techniques and tools for evaluating regression models and explore ways to predict customer choice using classification algorithms. Finally, you’ll apply these techniques to create a churn model for modelling customer product choices.

By the end of this course, you will be able to build your own marketing reporting and interactive dashboard solutions.


See other courses available


Lesson One: Data Preparation and Cleaning

  • Data Models and Structured Data
  • pandas
  • Data Manipulation

Lesson Two: Data Exploration and Visualization

  • Identifying the Right Attributes
  • Generating Targeted Insights
  • Visualizing Data

Lesson Three: Unsupervised Learning: Customer Segmentation

  • Customer Segmentation Methods
  • Similarity and Data Standardization
  • k-means Clustering

Lesson Four: Choosing the Best Segmentation Approach

  • Choosing the Number of Clusters
  • Different Methods of Clustering
  • Evaluating Clustering

Lesson Five: Predicting Customer Revenue Using Linear Regression

  • Understanding Regression
  • Feature Engineering for Regression
  • Performing and Interpreting Linear Regression

Lesson Six: Other Regression Techniques and Tools for Evaluation

  • Evaluating the Accuracy of a Regression Model
  • Using Regularization for Feature Selection
  • Tree-Based Regression Models

Lesson Seven: Supervised Learning: Predicting Customer Churn

  • Classification Problems
  • Understanding Logistic Regression
  • Creating a Data Science Pipeline

Lesson Eight: Fine-Tuning Classification Algorithms

  • Support Vector Machine
  • Decision Trees
  • Random Forest
  • Preprocessing Data for Machine Learning Models
  • Model Evaluation
  • Performance Metrics

Lesson Nine: Modeling Customer Choice

  • Understanding Multiclass Classification
  • Class Imbalanced Data

Target Audience

Data Science for Marketing Analytics is designed for developers and marketing analysts looking to use new, more sophisticated tools in their marketing analytics efforts.


It’ll help if you have prior experience of coding in Python and knowledge of high school level mathematics. Some experience with databases, Excel, statistics, or Tableau is useful but not necessary.



For an optimal student experience, we recommend the following hardware configuration:

  • Processor: Dual Core or better
  • Memory: 4 GB RAM
  • Storage: 10 GB available space



You’ll also need the following software installed in advance:

  • Any of the following operating systems: Windows 7 SP1 32/64-bit, Windows 8.1 32/64-bit, or Windows 10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or later.
  • Browser: Google Chrome or Mozilla Firefox
  • Conda
  • Python 3.x