Cisco Training Courses

Cisco Training Courses

Insoft has been serving IT industry with authorized Cisco courses training, since 2010. Find all the relevant information on Cisco training on this page.

View More

Cisco Certifications

Experience a blended learning approach that combines the best of instructor-led training and self-paced e-learning to help you prepare for your certification exam.

View More

Cisco Learning Credits

Cisco Learning Credits (CLCs) are prepaid training vouchers redeemed directly with Cisco that make planning for your success easier when purchasing Cisco products and services.

Have CLCs and want to redeem them?

Cisco Continuing Education

The Cisco Continuing Education Program offers all active certification holders flexible options to recertify by completing a variety of eligible training items.

View More

Cisco U

Cisco U. is customized to achieve your learning needs as this provides learning paths that includes wide range of topics, including CCNA, Cloud and Network Automation Essentials.

Browse Catalogue

Cisco Business Enablement

The Cisco Business Enablement Partner Program focuses on sharpening the business skills of Cisco Channel Partners and customers.

View More

Fortinet Technical Certifications

Insoft Services´ training capabilities rely on the excellence of our exclusive Fortinet Certified Trainers (FCT). We are dedicated to providing high-quality training to Fortinet Customers and Partners.

View More

Fortinet Technical Courses

Insoft is recognised as Fortinet Authorized Training Center in selected locations across EMEA.

View More

ATC Status

Check our ATC Status across selected countries in Europe.

View More

Fortinet Services Packages

Insoft Services has developed a specific solution to streamline and simplify the process of installing or migrating to Fortinet Products.

Browse Packages

Prepforce Bootcamp

The only comprehensive source available today to prepare for Fortinet NSE 8 certification globally.

View More

Microsoft Training

Insoft Services provides Microsoft training in EMEAR. We provide Microsoft technical training and certification courses that are led by world-class instructors.

View More

Technical Training

The evolution of Extreme Networks Technical Training provides a comprehensive progressive pathway from Associate to Professional accreditation.

View More

ATP Accreditation

As an authorised training partner (ATP), Insoft Services ensures that you receive the highest standards of education available.

View More

Technical Training

The training includes self-paced labs for hands-on AWS practice in real-life scenarios, allowing you to learn at your own pace, in class, at work, or online.

View More

AWS Certifications

Having AWS certification means being on top of new and emerging cloud computing technologies that guide business transformation and growth, giving IT professionals and enthusiasts a significant advantage.

View More

AWS Certification Track

Explore AWS certifications designed for diverse roles, offering career growth, skill enhancement, and practical exam preparation to excel in cloud computing and AI technologies.

View More

What we do

Through our global presence and partner ecosystem, we provide strategic IT consulting services to align IT services with customers' business goals.

View More

 

We are pleased to launch pre-scoped Enterprise Networking Consulting Packages, our ready-made solutions, tailored to ensure efficiency and cost containment.

 

View More

 

We specialize in the deployment of vendor-specific automation tools as well as open-source and vendor-independent solutions, that can be tuned in accordance with the business needs of a specific organization.

 

View More

 

We provide comprehensive IoT consultancy, deployment and support solutions for businesses that want to launch or improve their use of connected technologies.

 

In a world where technologies are evolving rapidly, every company - business needs a partner to rely on and trust for the smooth and secure operation of its network infrastructure.

View More

 

In a world where technologies are evolving rapidly, every company - business needs a partner to rely on and trust for the smooth and secure operation of its network infrastructure.

View More

 

In a world where technologies are evolving rapidly, every company - business needs a partner to rely on and trust for the smooth and secure operation of its network infrastructure.

 

View More

 

In a world where technologies are evolving rapidly, every company - business needs a partner to rely on and trust for the smooth and secure operation of its network infrastructure.

 

View More
Cisco Training Courses

 

We provide the highest level of expertise on Cisco consultancy services, that target audits of your current network and implementing updates for improved operational performance, secure data and compliant systems.

View More

 

We provide the highest level of expertise on Fortinet consultancy services that target audits of your current network and implementing updates for improved operational performance, secure data and compliant systems.

View More

 

Our team can help enterprises, get the most value from Extreme products and services following our predefined value-added packages or custom ones that fits business needs.

 

View More

 

TXOne Networks provides cybersecurity solutions that ensure the reliability and safety of ICS and OT environments through the OT zero trust methodology protecting assets for their entire life cycle.

 

View More

About Us

Our training portfolio includes a wide range of IT training from IP providers, including Cisco, Extreme Networks, Fortinet, Microsoft, to name a few, in EMEA.

View More

MLOps Engineering on AWS

Contact Us

We would love to hear from you. Please complete this form to pre-book or request further information about our delivery options.

Data Protection & Privacy

I consent to receive emails and/or calls from Insoft Services related to the Insoft Services´ products and services.
I acknowledge that my data will be collected and processed as described in the Insoft Services privacy policy.

Close

MLOps Engineering on AWS

Enroll Now
MLOps Engineering on AWS
Duration
3 Days
Delivery
(Online and onsite)
Price
Price Upon Request

This course builds upon and extends the DevOps methodology prevalent in software development to build, train, and deploy machine learning (ML) models. The course is based on the four-level MLOPs maturity framework. The course focuses on the first three levels, including the initial, repeatable, and reliable levels. The course stresses the importance of data, model, and code to successful ML deployments. It demonstrates the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course also discusses the use of tools and processes to monitor and take action when the model prediction in production drifts from agreed-upon key performance indicators.

  • Course level: Intermediate

In this course, you will learn to:

  • Explain the benefits of MLOps
  • Compare and contrast DevOps and MLOps
  • Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
  • Set up experimentation environments for MLOps with Amazon SageMaker
  • Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
  • Describe three options for creating a full CI/CD pipeline in an ML context
  • Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
  • Demonstrate how to monitor ML based solutions
  • Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data

Day 1

Module 1: Introduction to MLOps

  • Processes
  • People
  • Technology
  • Security and governance
  • MLOps maturity model

Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio

  • Bringing MLOps to experimentation
  • Setting up the ML experimentation environment
  • Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
  • Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
  • Workbook: Initial MLOps

Module 3: Repeatable MLOps: Repositories

  • Managing data for MLOps
  • Version control of ML models
  • Code repositories in ML

Module 4: Repeatable MLOps: Orchestration

  • ML pipelines
  • Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines

Day 2

Module 4: Repeatable MLOps: Orchestration (continued)

  • End-to-end orchestration with AWS Step Functions
  • Hands-On Lab: Automating a Workflow with Step Functions
  • End-to-end orchestration with SageMaker Projects
  • Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
  • Using third-party tools for repeatability
  • Demonstration: Exploring Human-in-the-Loop During Inference
  • Governance and security
  • Demonstration: Exploring Security Best Practices for SageMaker
  • Workbook: Repeatable MLOps

Module 5: Reliable MLOps: Scaling and Testing

  • Scaling and multi-account strategies
  • Testing and traffic-shifting
  • Demonstration: Using SageMaker Inference Recommender
  • Hands-On Lab: Testing Model Variants

Day 3

Module 5: Reliable MLOps: Scaling and Testing (continued)

  • Hands-On Lab: Shifting Traffic
  • Workbook: Multi-account strategies

Module 6: Reliable MLOps: Monitoring

  • The importance of monitoring in ML
  • Hands-On Lab: Monitoring a Model for Data Drift
  • Operations considerations for model monitoring
  • Remediating problems identified by monitoring ML solutions
  • Workbook: Reliable MLOps
  • Hands-On Lab: Building and Troubleshooting an ML Pipeline

This course is intended for:

  • MLOps engineers who want to productionize and monitor ML models in the AWS cloud
  • DevOps engineers who will be responsible for successfully deploying and maintaining ML models in production

We recommend that attendees of this course have:

  • AWS Technical Essentials (classroom or digital)
  • DevOps Engineering on AWS, or equivalent experience
  • Practical Data Science with Amazon SageMaker, or equivalent experience
This course builds upon and extends the DevOps methodology prevalent in software development to build, train, and deploy machine learning (ML) models. The course is based on the four-level MLOPs maturity framework. The course focuses on the first three levels, including the initial, repeatable, and reliable levels. The course stresses the importance of data, model, and code to successful ML deployments. It demonstrates the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course also discusses the use of tools and processes to monitor and take action when the model prediction in production drifts from agreed-upon key performance indicators.
  • Course level: Intermediate

In this course, you will learn to:

  • Explain the benefits of MLOps
  • Compare and contrast DevOps and MLOps
  • Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
  • Set up experimentation environments for MLOps with Amazon SageMaker
  • Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
  • Describe three options for creating a full CI/CD pipeline in an ML context
  • Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
  • Demonstrate how to monitor ML based solutions
  • Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data

Day 1

Module 1: Introduction to MLOps

  • Processes
  • People
  • Technology
  • Security and governance
  • MLOps maturity model

Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio

  • Bringing MLOps to experimentation
  • Setting up the ML experimentation environment
  • Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
  • Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
  • Workbook: Initial MLOps

Module 3: Repeatable MLOps: Repositories

  • Managing data for MLOps
  • Version control of ML models
  • Code repositories in ML

Module 4: Repeatable MLOps: Orchestration

  • ML pipelines
  • Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines

Day 2

Module 4: Repeatable MLOps: Orchestration (continued)

  • End-to-end orchestration with AWS Step Functions
  • Hands-On Lab: Automating a Workflow with Step Functions
  • End-to-end orchestration with SageMaker Projects
  • Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
  • Using third-party tools for repeatability
  • Demonstration: Exploring Human-in-the-Loop During Inference
  • Governance and security
  • Demonstration: Exploring Security Best Practices for SageMaker
  • Workbook: Repeatable MLOps

Module 5: Reliable MLOps: Scaling and Testing

  • Scaling and multi-account strategies
  • Testing and traffic-shifting
  • Demonstration: Using SageMaker Inference Recommender
  • Hands-On Lab: Testing Model Variants

Day 3

Module 5: Reliable MLOps: Scaling and Testing (continued)

  • Hands-On Lab: Shifting Traffic
  • Workbook: Multi-account strategies

Module 6: Reliable MLOps: Monitoring

  • The importance of monitoring in ML
  • Hands-On Lab: Monitoring a Model for Data Drift
  • Operations considerations for model monitoring
  • Remediating problems identified by monitoring ML solutions
  • Workbook: Reliable MLOps
  • Hands-On Lab: Building and Troubleshooting an ML Pipeline

This course is intended for:

  • MLOps engineers who want to productionize and monitor ML models in the AWS cloud
  • DevOps engineers who will be responsible for successfully deploying and maintaining ML models in production

We recommend that attendees of this course have:

  • AWS Technical Essentials (classroom or digital)
  • DevOps Engineering on AWS, or equivalent experience
  • Practical Data Science with Amazon SageMaker, or equivalent experience